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a b s t r a c t

The combination of turbulent buoyant flow with a free surface (Rayleigh–Bénard–Marangoni convection)
and rotation is hardly investigated in detail, especially for low Prandtl number fluids, although it can be
found in several applications such as Czochralski (Cz) crystal growth. Therefore, a Direct Numerical Simu-
lation (DNS) of such a Cz case with an idealized cylindrical crucible geometry of 170 mm radius and a rotat-
ing crystal of 50 mm radius was conducted applying realistic boundary conditions, which lead to the
dimensionless numbers of Re ¼ 4:7� 104;Gr ¼ 2:2� 109;Ma ¼ 2:8� 104, and Ra ¼ 2:8� 107. The compu-
tational grid contained ca. 8.4 million control volumes to resolve all turbulent scales based on a finite-vol-
ume scheme for curvilinear block-structured grids and an explicit time discretization. The resulting velocity
and temperature fields show fully developed three-dimensional turbulence and are characterized by ther-
mal buoyant plumes rising from the bottom of the crucible to the free surface, surface tension effects, and
the strong impact of the counterrotating crystal. The analysis of the instantaneous flow revealed that in the
rotating melt a large, slowly moving spiral vortex evolves. The averaged data show the formation of Bénard
cell-like structures. Below the crystal, along the free surface, and especially at the corner of the crystal, the
turbulence intensity is strongest. The DNS results were generated and analyzed in detail in order to serve as
a reference and will also be made available to the public for further investigations. Within an ongoing study
these data will be used to validate computations for practical applications employing the Large-Eddy Sim-
ulation (LES) technique, which is used to model the turbulent flow and temperature field in order to save
computational time compared to DNS.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flows dominated by buoyancy and surface tension effects are
among the most common flow phenomena including heat transfer
occurring in nature. Therefore, numerous investigations have been
conducted in this field. The first observations of pattern formation
in an open liquid heated from below were reported by Bénard in
1900 [1,2]. Lord Rayleigh published a theoretical analysis of a
slightly different and simpler configuration, where the liquid is
confined between two plates, in 1912 [3]. This system is nowadays
called after Rayleigh and Bénard (R–B), although there is no free
surface like in the original experiment by Bénard. It is still subject
of research activities, because many properties of flow and heat
transfer, especially in the turbulent or transitional state, can be
determined [4,5]. In the last decades, besides experiments and the-
oretical considerations, numerical simulations have become more
important, because they can provide more detailed data such as
fully three-dimensional time-dependent velocity and temperature
ll rights reserved.
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fields. Furthermore, a broader range of parameters can be exam-
ined more quickly and easily, e.g. in case of low Prandtl numbers.
Even physically infeasible, but scientifically interesting studies like
on the effect of zero Prandtl number [6], can be conducted via sim-
ulations. On one side, the mechanisms of pattern formation and
instabilities were analyzed, see [7–10] for an extensive description.
Depending on the governing parameters, stationary or oscillating,
symmetric or asymmetric hexagonal, square, and roll patterns as
well as traveling waves among others were found. However, for
high values of the characteristic dimensionless numbers, the flow
structure becomes chaotic in nature, i.e. turbulent. On the other
side, attempts were made to find scaling laws for turbulent flow
and heat transfer (especially between important dimensionless
parameters such as Ra, Pr, and Nu), see [11,12] for an overview. De-
spite the large number of studies, no agreement has been found yet
upon a unique dependence, especially in the regions of extreme
values, i.e. very large Rayleigh numbers ðRa > 1015Þ [13–16] and/
or low Prandtl numbers [6,17–27]. The latter case is especially
important for applications involving liquid metals or metalloids,
as for example in casting or crystal growth of semiconductors.

The original case of Bénard [1,2] including a free surface is less
studied, although at least of the same scientific and practical
importance. The fact that the pattern formation is caused by
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Nomenclature

Abbreviations
B–M Bénard–Marangoni
CV control volume
Cz Czochralski
DNS direct numerical simulation
LES large-eddy simulation
R–B Rayleigh–Bénard

Greek symbols
b thermal expansion coefficient
kv viscous sublayer thickness
l dynamic viscosity
m kinematic viscosity
x angular velocity
q density
r surface tension
rSB Stefan–Boltzmann constant
e emissivity
ek dissipation rate

Latin symbols
cp specific heat capacity
G buoyancy term

g gravitational acceleration
H; h height
k thermal conductivity
k turbulent kinetic energy
P pressure
P production term
R; r radius
R1;R2 curvature radii
T temperature
t time
ui velocities
xi coordinate direction

Subscripts
b buoyancy
c crucible
n; s; t normal and tangential directions
s crystal

Superscripts
ðÞþ dimensionless wall-distance
hi time-average
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thermocapillary forces was ignored by Bénard himself, and first
discovered by Block [28]. Due to the combination of these two ef-
fects (buoyancy and thermocapillary convection), the phenome-
non is mostly called Bénard–Marangoni (B–M) convection. The
first stability analysis by Pearson [29] neglected the buoyancy ef-
fect, which was then included in the work by Nield [30]. Like in
R–B convection, mostly the instabilities and dependencies of Nu,
Ra, and Pr are studied in the literature (see [31,32], e.g.). Again,
the low-Prandtl number regime is of special interest due to its
relevance for crystal growth applications. The flow structure
changes significantly with decreasing Pr, e.g. the hexagonal cells
become inverted [33]. Furthermore, so-called inertial convection
[34] occurs, i.e. the kinetic energy of the moving fluid is much lar-
ger than the dissipated energy, analog to a mechanical flywheel. A
detailed literature overview can be found in [35,36]. In B–M con-
vection, shear stresses can occur at the free surface which are in-
duced by the movement of the surrounding gas. However, in
most cases they can be neglected and the so-called one-layer ap-
proach can be used, see the analysis in [37]. Furthermore, stresses
are caused by the deformation of the free surface and lead to
long-wavelength instabilities, but they are restricted to certain
parameters like large aspect ratios and thus are of marginal
importance for typical configurations. B–M convection is also
investigated in combination with other physical effects like rota-
tion (see [24,38–40], e.g.), which changes the flow patterns due to
the additional Coriolis and centrifugal forces. Also magnetic fields
in case of electrically conducting fluids (see [41], e.g.) are used to
influence the velocity field.

All effects described can be found in Czochralski (Cz) systems for
crystal growth of semiconductors such as silicon with a Prandtl
number of about 0.01. With this method, more than 90% of the silicon
single crystals for the electronics industry are grown. The process
has a simple setup: The molten silicon is contained in an open cruci-
ble, which is rotating and heated from the side. Starting with a seed
crystal, the bulk crystal is slowly pulled from the melt, while rotating
in the opposite direction of the crucible. Due to this configuration,
the above mentioned different forces act on the melt: coriolis and
centrifugal forces, buoyancy, and surface tension, leading to a com-
plex flow similar to rotating Bénard–Marangoni convection in com-
bination with a rotating disc (for the crystal). Comprehensive
theoretical studies on the flow structure and instabilities in Cz melts
based on experimental observations were conducted by Ristorcelli
and Lumley [42], Müller [43], and Kakimoto [44], who also compared
the results with numerical simulations. Not less than 10 different
types of instability mechanisms were found. Also Cz-specific pattern
formations were observed, such as spoke patterns [45] and cellular
structures [46].

However, experimental measurements in Cz systems are prob-
lematic, because of the very hot and chemically aggressive melt,
which complicates the use of thermocouples for temperature mea-
surement. Furthermore, the opaqueness of the melt hampers opti-
cal measurement techniques. Therefore, only very few
experimental data are available from literature, e.g. from Jones
[47], who used a transparent model fluid, or Tanaka et al. [48],
employing a CCD camera for observation of the surface tempera-
ture. Later, also X-ray radiography [49], and highly insulated ther-
mocouples [43,50] were used. All these techniques have
limitations according to their nature. With the latter method,
e.g., only a few discrete points can be measured, the inserted ther-
mocouple disturbs the flow structure, and the extra insulations
dampen the high-frequency signals.

Thus, to obtain more detailed data, ‘‘numerical experiments”
have become quite popular. In early computations, many simplifica-
tions were applied due to the limited computing resources, such as
the assumption of 2D axisymmetry. However, the flow is three-
dimensional, time-dependent, and, caused by the increasing size of
the crucible and the resulting high Reynolds and Rayleigh numbers,
fully turbulent [51]. This makes computer simulations difficult, as
the flow field has to be resolved very finely, if an accurate solution
is desired. Such Direct Numerical Simulations (DNS), which resolve
all turbulent scales, are therefore very expensive and time-consum-
ing, so that only a few cases are known from literature (see Table 1).

The first three-dimensional computation was conducted by Mi-
helčić in 1984 [52], but with a very coarse grid not adequate for
DNS. A reasonable (but still insufficient) resolution in terms of num-
ber of CVs was employed by Xiao and Derby [53] for oxide melts. En-



Table 1
Overview of simulations carried out for Cz crystal growth using DNS and Quasi-DNS

Reference Year Gr Ta Rc CVs

Tanaka et al. [48]a 1997 1:6� 109 c 2:6� 106 � 2:86� 109 220 mm 326,106
Kishida and Okazawa [61] 1999
Kishida et al. [62] 2005 1:08� 109 c 4:2� 109 � 3:4� 1011 220 mm 312,000
Enger [51] a 2001 5� 108b 1:6� 109 � 1010 170 mm 4,980,736
Enger et al. [54] a 2001 5� 108 b 1:6� 109 � 1010 170 mm 1,945,600
Basu et al. [46] a 2000 1:6� 109 b 2:86� 109 220 mm 336,960
Kumar et al. [60] 2003 1:6� 109 b 2:86� 109 220 mm 336,960
Kumar et al. [55] 2003 5� 108 b 1:6� 109 170 mm 1,000,000
Schäfer et al. [56] 2005 5� 108 b 1:6� 109 170 mm 1,000,000
Vizman et al. [59] 2001 3� 109 c 1:6� 109 � 1010 170 mm 950,000
Wagner [64] 2003,
Wagner and Friedrich [65] 2004 1:6� 109 c 1010 170 mm 2,840,064
Watanabe et al. [63] 2006 2� 1010 c – 320 mm 330,000

a Without Marangoni convection.
b Based on crucible height.
c Based on crucible radius.
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ger et al. [54] and Enger [51] were the first who computed a large
industrial Cz crucible with 170 mm radius with a fine grid, obtaining
very detailed results, but neglegting the Marangoni effect. However,
this has a major influence on the flow structure in the silicon melt, as
Kumar et al. [55] found out by repeating the simulations including
surface tension. The same configuration was also used for a detailed
three-dimensional visualization and computational steering of the
Cz melt flow [56]. Also oxide melts were analyzed [57,58], simulat-
ing the experiments by Jones [47] with a model fluid in a crucible
of 170 mm radius, but using less resolution, calling this method Qua-
si-DNS. Vizman et al. [59] computed a realistic Cz configuration sim-
ilar to that in [54], but the applied resolution of approximately
950,000 cells can be estimated as too coarse for DNS. The same ap-
plies to other simulations found in the literature, such as Tanaka
et al. [48], Basu et al. [46], Kumar et al. [60], Kishida and Okazawa
[61] and Kishida et al. [62] and Watanabe et al. [63]. All these predic-
tions were conducted with even less CVs (around 330,000), although
the crucibles were bigger. To the authors’ knowledge, the only well-
resolved Cz–DNS besides Enger’s was conducted by Wagner [64] and
Wagner and Friedrich [65], who used an idealized cylindrical cruci-
ble geometry with computational grids of 2–4.5 million cells, simu-
lating the idealized Cz system with different parameters for rotation
and comparing the predictions to experimental results. However,
the published data are not very detailed and only usable for qualita-
tive analysis, which was done by the authors recently [66,67]. More-
over, the use of some of the parameters like material properties (e.g.
thermal conductivity) and boundary conditions (e.g. the approxima-
tion of thermal radiation at the free surface by fixed heat fluxes) were
not convincing. Finally, the data sets were not made available by the
authors for further investigation. Consequently, no DNS data set is
available, which takes all issues mentioned above into account. Thus,
in the present work a new DNS was conducted for detailed analysis
of the flow structure of a Cz-system and to obtain reference data for
the validation of LES predictions used for turbulence modeling in
practical applications.

The paper is organized as follows: Section 2 starts with the
statement of the physical problem. In Section 3, the numerical
method is described, and the succeeding section delivers all details
of the computational grid applied. The specification of the simula-
tion carried out can be found in Section 5. In Section 6, the results
of the DNS are presented and discussed. In Section 7, the results are
summarized and conclusions are drawn.

2. Problem description

For the simulations, an idealized geometry was adopted from an
industrial crucible (Leybold EKZ 1300) for the growth of 100 mm silicon
crystals (see Fig. 1). Both the original and modified geometry has been
used many times for simulations and experiments and can be called a
standard case. The crucible is assumed to be of cylindrical shape with
a diameter of 340 mm, a height of 85 mm, and a 100 mm crystal on
top of themelt,whichis not explicitlysimulated,but treated as a bound-
ary condition. Details about the boundary conditions can be found in
Section 3.3. The melt-crystal interface is assumed to be flat. The crucible
is rotating with xc ¼ 5 rpm in counter-clockwise direction, while the
crystal is counterrotating with xs ¼ �20 rpm. The crucible is heated
from the side, which is modeled via a fixed temperature distribution
at the side walls TðzÞ and the bottom of the crucible TðrÞ. These data
were interpolated from an experiment conducted by Gräbner et al.
[50]. Thermal radiation loss is considered from the free surface of the
melt to the surrounding atmosphere ðTenv ¼ 1600 KÞ. Additionally, at
the free surface, Marangoni convection is accounted for by assuming a
temperature-dependent surface tension rðTÞ. The material properties
of the silicon melt are given in Table 2.

The characteristic scales of the process are the crucible radius
Rc ¼ 170 mm and the maximum temperature difference
DT ¼ 37:8 K, derived from the maximum temperature at the crucible
Tmax ¼ 1722:8 K, located at the corner between bottom and sidewall,
and the melting temperature of silicon (at the crystal)
Tmin ¼ Tmelt ¼ 1685 K, from which also a characteristic buoyant veloc-
ity ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgRcDT

p
¼ 0:094 m=s can be calculated. From these refer-

ence quantities together with the material data, the relevant
dimensionless numbers of the Cz system can be determined, see Table
2. The dimensionless temperature is defined as ðT � T0Þ=DT with
T0 ¼ ðTmax þ TminÞ=2 ¼ 1703:9 K, and the time scale as Rc=ub ¼ 1:81 s.

The Prandtl number Pr of silicon is quite small, which means that
the momentum diffusion is much smaller than the thermal diffusion.
The convective effects are characterized by the Reynolds number Re,
which is the quotient of convective transport and movement due to
molecular momentum transport, the Grashof number Gr, which
states the ratio of buoyant to viscous forces, and the Rayleigh num-
ber Ra, which is the product of Gr and Pr, and thus is two orders of
magnitude smaller than Gr. The Rayleigh number describes the ratio
of convective to diffusive transport. As it is of the order of 107, con-
vection is dominant in this configuration of flow and heat transfer.
Furthermore, by definition of Ristorcelli and Lumley [42], e.g., for
R–B systems, the present configuration is situated close to the tran-
sition of ‘‘soft” to ‘‘hard” turbulence ðRacrit ¼ 4� 107Þ. The Marang-
oni number Ma describes the ratio between surface-tension
induced velocities and those due to thermal molecular transport.
The magnitude of Ma suggests that the surface tension forces have
a major influence on the flow field. Additionally, the effect of rotation
is characterized by the Taylor number Ta, which denotes the ratio of
Coriolis to viscous forces.
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Fig. 1. Geometry and boundary conditions of the simulation and computational grid consisting of 8 blocks in O-grid configuration. Here, only every 8th grid line is shown in
each direction for better visibility.

Table 2
Properties of silicon melt and resulting dimensionless numbers of the Cz simulation

Property/number Symbol Formula Value Unit

Density q 2530 kg=m3

Dynamic viscosity l 8:6� 10�4 kg/(m s)
Kinematic viscosity m 3:4� 10�7 m2=s
Thermal expansion

coefficient
b 1:4� 10�4 1/K

Thermal conductivity k 67:0 J/(s m K)
Specific heat capacity cp 1000 J/(kg K)
Temperature coefficient of

surface tension
dr=dT �1:0� 10�4 N/(m K)

Melting temperature Tmelt 1685 K
Emissivity e 0.3
Stefan–Boltzmann constant rSB 5:67032� 10�8 W=ðm2 K4Þ
Surrounding temperature Tenv 1600 K

Prandtl Pr lcp
k 1:284� 10�2

Reynolds Re Rcub
m 4:697� 104

Reynolds (rotational) Rex
R2

c xc
m 4:451� 104

Grashof (thermal) Gr bgR3
c DT

m2 2:206� 109

Marangoni Ma � dr
dT

RccpDT
m k 2:822� 104

Rayleigh Ra Gr Pr 2:833� 107

Taylor Ta 4Re2
x 7:923� 109
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3. Numerical formulation

3.1. Governing equations

The flow and heat transfer in the melt are governed by the
three-dimensional Navier–Stokes equations for an incompressible
Newtonian fluid expressing the conservation of mass, momentum
and energy. Using the above mentioned characteristic scales and
the resulting dimensionless numbers, the equations are non-
dimensionalized. Buoyancy is taken into account by the Boussinesq
approximation assuming only small temperature gradients. The
simulations are conducted in a rotating frame of reference with
the crucible as the reference system. Due to Coriolis and centrifugal
forces induced by rotation, additional source terms must be added
to the right side of the momentum equation. The viscous dissipa-
tion in the energy equation is neglected. For details see [55,60], e.g.

3.2. Finite-volume method

The computer code LESOCC [68–71] is used for integrating the
governing equations in space and time. It is based on a three-
dimensional finite-volume method for arbitrary non-orthogonal
and block-structured grids. All viscous fluxes are approximated
by central differences of second-order accuracy, which fits the
elliptic nature of the viscous effects. The non-linear convective
fluxes in the momentum equation are discretized by a central
scheme of second-order accuracy (CDS-2). Although this approxi-
mation is formally only of first-order accuracy on non-uniform
grids, the truncation error of the CDS is almost one order smaller
than of first-order schemes due to the high quality of the grid ex-
pressed by a stretching factor close to unity [72]. Thus the discret-
ization used here is approximately second-order accurate can be
assumed appropriate for DNS computations.

Time advancement is performed by a predictor–corrector scheme. A
low-storage multi-stage Runge–Kutta method (three sub-steps, sec-
ond-order accuracy) is applied for integrating the momentum equa-
tions in the predictor step. Within the corrector step the Poisson
equation for the pressure correction is solved implicitly by the incom-
plete LU decomposition method of Stone [73]. Based on the predicted
pressure correction, the pressure and velocities are updated until mass
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conservation is achieved. Explicit time marching works well for DNS
with small time steps which are necessary to resolve turbulent motion
intime.Thepressureandvelocityfields onanon-staggeredgridarecou-
pled by the momentum interpolation technique of Rhie and Chow [74].
A variety of different test cases (see [68–71], e.g.) served for the purpose
of code validation.

The algorithm is highly vectorized and additionally parallelized
by domain decomposition with explicit message-passing based on
MPI (Message Passing Interface) allowing efficient computations
especially on vector-parallel machines and SMP (Symmetric Mul-
ti-Processing) clusters. The present DNS predictions were carried
out on the vector-parallel supercomputer NEC SX-8 at the HLRS
in Stuttgart using 8 processors, i.e. 1 node.

3.3. Boundary conditions

As mentioned above, the simulations are conducted in a rotating
frame of reference with the crucible as the reference system. Thus,
formally the crucible is at rest, while the crystal is rotating in clock-
wise direction with jxcj þ jxsj ¼ 25 rpm. The angular velocity of the
crucible is added to the flow field afterwards. At the crucible walls
and the crystal, the no-slip condition is applied, whereas at the free
surface of the melt, Marangoni convection is considered. Marangoni
convection is induced by temperature gradients at the free surface of
the liquid which causes changes in the surface tension and thus gives
rise to fluid motion. This motion is modeled by the Laplace–Young
equation, stating force balances along the surface in normal

�2l oun

oxn
¼ DP þ r 1

R1
þ 1

R2

� �
ð1Þ

and tangential directions

l ous

oxn
þ oun

oxs

� �
¼ or

oxs
and l out

oxn
þ oun

oxt

� �
¼ or

oxt
: ð2Þ

For simplicity, the free surface is assumed to be flat, i.e. the velocity
in normal direction is assumed to be zero un ¼ 0, and the curvature
radii are infinite. Moreover, for low viscosities l, the normal compo-
nent of the stress �2loun=oxn can be neglected, such that from Eq.
(1) DP is zero. The surface tension is assumed to be a function of
temperature only, which is approximated linearly by

r ¼ r0 þ
dr
dT
ðT � T0Þ ð3Þ

with a constant coefficient of proportionality dr=dT (see Table 2).
Thermal radiation from the free surface of the melt is considered
by the Stefan–Boltzmann equation:

krT ¼ rSBeðT4 � T4
envÞ: ð4Þ

The temperature at the crucible is fixed to a certain profile, which
was derived from experimental data of Gräbner et al. [50] and inter-
polated to the cylindrical geometry. In dimensionless form, the
temperature distributions at the sidewalls and at the bottom read

TðzÞ�T0

DT
¼4:6

H�z
Rc

� �3

�6:85
H�z

Rc

� �2

þ3:615
H�z

Rc
�0:169; ð5Þ

and
TðrÞ�T0

DT
¼0:619

r
Rc

� �2

�0:119; ð6Þ

respectively. The profiles are depicted in Fig. 1.

4. Computational grids

4.1. Resolution requirements

For the accuracy of the simulations, the quality and resolution
of the computational grids are crucial. In DNS calculations, all tur-
bulent scales have to be resolved. Two issues have to be taken into
account for this purpose. First, the resolution in the inner compu-
tational domain has to be checked, and second, the resolution of
the boundary layers near solid walls has to be investigated. For
the first issue a homogeneous isotropic flow field is typically as-
sumed which allows to estimate the smallest turbulent scales. An
estimation of the size of the smallest scales was first done by Kol-
mogorov [75,76], determining a characteristic length scale lc for
the smallest turbulent structures from the kinematic viscosity m
and the dissipation rate ek of the turbulent kinetic energy. With
the normalization used here, the criterion reads in dimensionless
form

lc ¼
1

ekRe3

� �1
4

; ð7Þ

where ek is defined as the trace of the dissipation tensor eij in non-
dimensional form and averaged in time:

eij ¼
1
Re

ou0j
oxi

ou0j
oxi

� �
and ek ¼

1
2

eii: ð8Þ

Considering the estimation of Pope [77], the maximum dissipation
takes place at a length scale of about 24lc. Since at least two grid
points are needed to resolve a flow feature, a grid spacing of
hmax 6 12lc is required. Due to the low Prandtl number in the pres-
ent case, the turbulent structures of the velocity field are much
smaller than those of the thermal field. Hence, the resolution
requirement is determined by the velocity field and not by the tem-
perature field. Thus, the Reynolds number was chosen for the scal-
ing. Owing to the fact that the flow is dominated by buoyancy, and
the characteristic velocity is defined accordingly (see Section 2), one
could also take the Grashof number for the scaling.

The dissipation rate ek is not known a priori, as it is computed
from flow quantities. Thus, it was estimated from simulations in
the literature, e.g. by Wagner [64]. Accordingly, the computa-
tional grid was firstly chosen to contain 8,388,608 CVs, which
is divided into 8 blocks with 128� 128� 64 CVs each. Then
from test simulations the actual dissipation rate ek was deter-
mined from the DNS to check if the resolution is sufficient. In
the bulk of the melt, the dissipation rate is not very high, the
overall average dimensionless value is heki ¼ 0:00544, leading
to a mean grid width of hmax ¼ 0:0138 for the interior. Near
the walls, however, the dissipation rate adopts much larger val-
ues up to a maximum of ek;max ¼ 0:466 close to the crystal cor-
ner, which means an edge length of the CV of hmax ¼ 0:00458.
On the basis of the large discrepancy between the average and
maximum value, the grid was refined towards the walls and
the crystal region. A stretching ratio of 1.1 at most was applied
to avoid convergence problems and to keep numerical errors
small (see Section 3.2), such that the discretization scheme is
still very close to second order accuracy despite the non-unifor-
mity of the grid [72]. The actual mean grid width h, defined by
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDyDz3

p
under the assumption that the cells are nearly cu-

bic, was directly compared to hmax. Values of h=hmax 6 1 mean
that according to the estimates of Kolmogorov and Pope, respec-
tively, all turbulent scales of the flow are resolved. This is the
case in the whole domain. Especially in the center of the cruci-
ble, the grid shows a very fine resolution with h=hmax 6 0:2. Near
the walls and the free surface as well as below the crystal, the
dissipation is very high, so that the values of h=hmax are bigger,
yet always below 0.7 and thus the computational cells are suffi-
ciently small there.

Analogous to the characteristic length scale lc for the estimation
of the spatial resolution requirement, also a typical time scale tc

can be determined, using the following definition by Kolmogorov
[75,76] in non-dimensional form:
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tc ¼
1

ekRe

� �1
2

: ð9Þ

With the computed value of ek;max, this gives a smallest time step of
6:76� 10�3. Due to the explicit time marching algorithm used here,
the time step size had to be chosen as 2:5� 10�4 for numerical sta-
bility, so that the Kolmogorov limit has already been achieved.

However, in the bulk of the melt the flow is far from being
homogeneous and isotropic and thus the relation given can only
provide a crude estimate. Furthermore, the largest values of
h=hmax are found in the vicinity of the crucible walls. Especially
in this near-wall region where the flow is strongly inhomogeneous
and anisotropic, the second criterion mentioned above has to be ta-
ken into account. Owing to the low Prandtl number of the Si melt,
the velocity boundary layer is expected to be much thinner than
the thermal boundary layer and thus has to be checked in detail.

To verify the sufficiency of the resolution in the critical near-
wall regions, the minimum non-dimensional wall-distances nþ

were calculated using the time-averaged wall shear stress hswi:

nþ ¼ xn husi Re ¼ xn

ffiffiffiffiffiffiffiffiffiffi
hswi
q

s
Re ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Re

ohupari
oxn

s
Re; ð10Þ

where n denotes the dimensionless normal distance from the wall
(this corresponds to the coordinates y or z, respectively), husi the
averaged wall shear stress velocity, and hupari the averaged total
magnitude of wall-parallel velocities. In Fig. 2 it can be seen that
the values of yþ and zþ are ranging up to 1.4 at the bottom and at
the sidewall with most values below unity, which are reasonable
values, proving that the resolution at the walls is sufficient. Below
the crystal, the values are larger due to the high shear induced by
the counterrotation, with a maximum zþ of about 7. This can be de-
noted as too high, however, this region is very small compared to
the rest of the domain, and an increase of the grid resolution would
add enormously to the computational power needed without an
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Fig. 2. Values of yþ (a) below the crystal, (b) at the crucible sidewall, and (c) at the cru
adequate benefit. So the overall mesh size can be stated as suffi-
cient, and in comparison with previous simulations available in
the literature, the resolution is strongly improved.

This fact is also confirmed when the thickness of the boundary
layers is estimated. In Fig. 3, the dimensionless averaged velocity
profiles uþ ¼ hupari=husi at several positions at the crucible bottom,
the sidewall and below the crystal are shown. In the graphs, the
positions of the cell centers of the numerical grid are indicated
as vertical or horizontal lines. It can be deduced that, except maybe
below the crystal, at least 3 CVs are in the viscous sublayer, which
extends from the wall to approximately nþ ¼ 5 and can be identi-
fied through the linear velocity profile. As mentioned above, by vir-
tue of the low Prandtl number, the temperature boundary layer is
much thicker and thus is automatically resolved well.

The thickness of the viscous sublayer was chosen as an a priori
estimation of the resolution required and researched for in the lit-
erature. Unfortunately, boundary layers in low-Pr convection are
rarely investigated. To the authors’ knowledge, Cioni et al. [17]
are the only ones to mention a specific formula for the thickness
of the viscous sublayer kv in R–B convection in mercury:
kv=L � 140=Re with a characteristic length scale L. With the values
of the present case, a value of kv=L ¼ 0:003 can be deduced, which
corresponds to kv ¼ 0:51 mm. This agrees quite well with the re-
sults of the present simulations, where the end of the viscous sub-
layer, i.e. the linear relation, at yþ ¼ 5 approximately collapses
with the coordinate value of z=Rc ¼ 0:005 at the bottom of the cru-
cible. Takeshita et al. [22] also conducted experiments with R–B
convection in mercury, but the boundary layer thickness they mea-
sured (2.7 mm in a cell of 10 cm height) is defined in a different
way, suggesting that it might be for the full boundary layer, not
just for the viscous sublayer. The same applies to the results of sim-
ulations by Verzicco and Camussi [19], who obtained a value of
about 4.6 mm for the boundary layer thickness. As these values
are the only usable data from the literature, it can be concluded
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Fig. 3. Dimensionless velocity profiles (a)–(c) below the crystal, (d)–(f) at the
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circumferentially and time-averaged quantities.
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that boundary layers especially in low-Pr fluids must still be sub-
ject of investigation. Due to the lack of data, for the estimation of
the resolution requirements of the near-wall regions, different
approximations can be found in the literature. Grötzbach [78] ana-
lyzed this topic in depth, and his derived criteria were used by sev-
eral authors (e.g. Verzicco and Camussi [19]). However, they are
based on several assumptions only valid for high- or moderate-Pr
fluids, e.g. that the thermal turbulent structures and boundary
layer thickness is the reference scale, which is not true for the pres-
ent Cz configuration at low-Pr. Thus the resolution requirements in
the present study have to rely on the criteria described above
showing that a sufficient resolution of the boundary layers could
be achieved, as can be concluded from the profiles in Fig. 3.

4.2. Grid topology and structure

The division of a cylindrical geometry into hexahedral CVs for
the structured computational grid can be achieved by several
ways. This topic was addressed in detail by Basu et al. [46]. In
order to avoid the singularities of a one-block polar grid or the
one-block barrel grid, which is a Cartesian grid fit to the circular
shape, an O-grid type mesh was chosen, i.e. one almost cubic
block is placed in the center of the cylinder, which is connected
to the outer part by a polar grid (see Fig. 1). As shown in [46],
this grid topology leads to a high-quality grid preventing conver-
gence problems and assuming low numerical errors. To take
advantage of the architecture of the supercomputer on which
the calculations were carried out, consisting of 8 processors
per node, the grid was designed to have 8 blocks. Consequently,
the inner block of the O-grid was split in half, so that it became
a dodecaedral structure with six outer blocks. To avoid highly
skewed cells which are detrimental for the convergence and
accuracy of the solution, the grid was smoothed using a Hilgen-
stock–Laplace and a Sörensen–Laplace algorithm, which are pre-
serving the cell heights at the boundaries and improving the
orthogonality while trying to find an equal node distribution in
the inner region. The resulting grid shows a quality improve-
ment especially in the vicinity of the corners of the O-grid,
where the cells are less skewed and smooth transitions across
the block boundaries could be achieved.

5. Case details

For the DNS, a dimensionless time step size of
Dtub=Rc ¼ 2:5� 10�4, which corresponds to about 4:5� 10�4 s of
real time, was chosen, resulting in a maximum CFL number of
about 0.18 throughout the computation. Due to the complexity
of the flow it is hard to identify characteristic structures from
the instantaneous velocity and temperature fields. Therefore,
the results were averaged in time and additionally in circumfer-
ential direction. This provides also higher-order statistics such
as Reynolds stresses relevant for turbulence analysis. To allow
the flow and heat transfer to reach a fully developed turbulent
state, the averaging procedure for the DNS was not started until
a time of approximately 66 dimensionless units, which is identi-
cal to 10 crucible revolutions or 2 min of real time. The averaging
process was then run for more than 4.3 million time steps, which
equals 1080 dimensionless units of simulation time, 32 min of
real time or more than 160 crucible revolutions, factoring in
every 10th time step. Even higher-order statistics such as the dis-
sipation tensor were computed, starting from a dimensionless
time of more than 260 units (equal to more than 40 crucible rev-
olutions), running for more than 800 units (120 revolutions). This
exceedingly long averaging period was necessary due to the fact
that large, slowly moving vortical structures were observed in
the melt flow, which hampered a fast attainment of well-aver-
aged data. This issue will be discussed more detailed in Section
6.1.
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The DNS was run on the NEC SX-8 vector computer at the HLRS
in Stuttgart, using one node with 8 processors according to the
block-structure of the grid. A very high average computing effi-
ciency of 8.2 GFlop/s per processor (more than 50% of the peak per-
formance) could be achieved. The whole simulation took more
than 1000 hours of real time.

6. Results and discussion

6.1. Dynamic behavior

Due to the turbulent nature, and thus the instationary and
three-dimensional behavior of the flow and heat transfer in the
Si melt, it is hard to gain information from the vast amount of data.
However, the analysis of the dynamics of the flow and heat transfer
is very important, as the resulting effects act locally and punctual
in time, not on an averaged basis, in a transient process such as
the Cz crystal growth. Thus, not the overall flow structure will be
described looking at the instantaneous data, but only important
phenomena will be discussed.

Due to the boundary conditions of the case and the resulting
high dimensionless numbers, Re, Ra, and Ma, the flow and heat
transfer is fully turbulent and thus beyond the limits of laminar
flow structures and regular or periodic patterns, caused by certain
Fig. 4. Instantaneous (a) and mean (b) temperature distribution with streamlines at th
surface, thermal plumes can be identified. The mean distribution shows that the melt fl
plumes appear preferably. Furthermore, the instantaneous temperature distribution (c) a
velocity structures in contrast to the larger temperature scales.
instabilities such as Bénard cells, waves etc., as described by Ristor-
celli and Lumley [42] and others. In fact, the structure of the flow
and heat transfer in the melt is dominated by the irregular forming
of buoyant plumes, carrying hot fluid from the bottom or side of
the heated crucible towards the cold crystal or the free surface,
which is cooled by thermal radiation. This can clearly be seen in
Fig. 4a, depicting a snapshot of the temperature distribution at
the free surface. These plumes or hot spots were also reported in
the literature by other researchers conducting simulations or
experiments, see e.g. [48,46]. Kishida et al. [61] attributed these
‘‘polka dots” to geostrophic turbulence caused by strong Coriolis
forces occurring at high rotation rates which counteract the buoy-
ant flow and thus destroy regular patterns like baroclinic waves. In
their experiments, characteristic features of such geostrophic tur-
bulence were observed. Contrarily, Enger [51] located the flow pat-
tern in a non-geostrophic turbulence regime, according to the
instability map of Fein and Pfeffer [79], who were investigating
flows in a rotating annulus. However, the Rossby number of the
melt flow is quite low (Ro ¼ 0:62 [51]), such that in this map the
flow would actually be located in the region of geostrophic turbu-
lence. But the state of geostrophic turbulence is reported to be
characterized by irregular waves, which contradicts the flow pat-
tern observations by Enger [51] and also in the present case. Fur-
thermore, Kakimoto et al. [80] mentioned differences of their
e free surface. In the center, the cold counterrotating crystal is located. At the free
ow is directed inwards. In the outer region, where the streamlines diverge, thermal
nd LIC velocity field (d) in a vertical cut through the crucible ðy ¼ 0Þ depict the small
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observations regarding geostrophic turbulence from an instability
map by Fowlis and Hide [81], which is similar to the one by Fein
and Pfeffer [79]. Thus it can be concluded that the results from
experiments with rotating annuli cannot be compared with the
Cz–Si simulations, presumably due to the different geometry.

At the free surface, the hot fluid is carried from the center of the
plumes outwards to the cooler regions, which is depicted in Fig. 4a
by the streamlines. This is the Marangoni effect, caused by the dif-
ference in surface tension between hot and cold fluid. The plumes
are not restricted to certain dimensions, but can also extend over
larger regions. However, they preferably do not appear in the vicin-
ity of the crystal, but closer to the crucible wall, as can be seen from
the mean streamlines in Fig. 4b.

Around the center of the crucible, a large vortical structure
forms (see Fig. 5). This is caused by the interaction of the crucible
rotation inducing centrifugal and Coriolis forces and the buoyancy,
leading to a spiral or swirling flow directed towards the center and
the bottom, which is typical for the rotating disc problem. It was
also observed by Jones et al. [82]. This structure remains stable
throughout the whole process, moving very slowly with respect
to the crucible in the same direction of rotation. In Fig. 5, the move-
ment is depicted by six consecutive snapshots of the pressure con-
tours in a horizontal cut through the middle of the crucible. The
time period between the first and sixth snapshot represents a half
rotation of the structure corresponding to about 7.5 crucible revo-
lutions. From the pressure contours and the streamlines in this
plane, it can also be seen that the vortex itself rotates in counter-
clockwise direction like the melt, with the center of rotation
slightly off the axis of the crucible, or even split up into two vorti-
ces. The fact that this large structure is moving faster than the cru-
cible rotation can be explained by momentum conservation. The
buoyancy and surface tension forces create an overall melt flow to-
wards the center of the crucible (see Fig. 4b), which causes an
accelerated rotation of the fluid. This phenomenon of stable eddies
was also observed in experiments with Cz–Si using X-ray radiogra-
phy by Kakimoto et al. [44], who attributed it to baroclinic instabil-
ity and geostrophic turbulence in the melt flow.

In Fig. 4c and d, an instantaneous temperature distribution and
velocity field (using the Line-Integral Convolution method (LIC))
are shown in a vertical cut through the crucible. It can clearly be
seen that according to the small Prandtl number of the Si melt,
the turbulent scales of the temperature field are much larger than
the scales of the velocity field. The flow field breaks up into very
small vortices where the kinetic energy is finally dissipated into
heat.

6.2. Time-averaged quantities

For the analysis of the statistical behavior of the melt, the veloc-
ity and temperature fields were averaged in time. For a cylindrical
geometry, one would expect an axisymmetric result, if the averag-
ing time is sufficiently long. In the present case, the amount of
more than four million time steps representing more than half
an hour of real time seems to be very high as it is far more than
the simulations from the literature known to the authors. How-
ever, as could be seen in the previous section, large vortical struc-
tures evolve in the melt flow, moving very slowly around in the
crucible, being almost stationary, and thus disturbing the averag-
ing procedure massively. Therefore, in the mean fields of tempera-
ture and velocities, still small asymmetries can be identified even
after the long simulation and averaging period. To level these
asymmetries out, the averaging process would have to be carried
out over an enormous time period, which cannot be achieved in
an acceptable time even with today’s high-performance computing
facilities. To overcome this problem, axisymmetry of all statistical
data was established through additional averaging in circumferen-
tial direction, so that the different quantities are presented in a ver-
tical half-slice of the crucible (see Figs. 6–8), where the sidewall is
located on the right and the central axis on the left. The crystal ex-
tends from the center to the dimensionless radius r=Rc ¼ 0:294 at
the top, the remaining part is the free surface.

Figs. 6–8 present an overview of the results of the DNS predic-
tion for the temperature and flow field, respectively. The averaged
temperature contours show that the heater provides the maximum
heat flux at the lower edge of the crucible, decreasing towards the
center and the top (Fig. 6a). The heat is transported through the
bulk of the melt, and finally lost at the free surface through thermal
radiation, or at the cooler solid crystal. The radiation effect is indi-
cated by the trend of the isotherms exhibiting a certain angle to the
free surface. It is relatively small compared to the cooling of the
crystal due to the high ambient temperature as can be seen from
the bunching of isotherms below the crystal. Although at this high
Rayleigh number the convective heat transport is much larger than
the conductive, the averaged temperature distribution shows a
pattern similar to conduction-dominated heat transfer with a
smooth gradient from the hot wall to the cool crystal. This origi-
nates from the fact that the thermal turbulent scales are quite large
at the low Prandtl number considered so that smaller structures
are ruled out.

From the streamlines in Fig. 6e, the characteristic structure of
the statistically averaged flow field can be observed, which consists
of three large convection rolls (denoted A, B, and C) extending over
the whole height of the melt and one secondary vortex at the top of
the sidewall (denoted D). This is typical for a system similar to
rotating Bénard–Marangoni, where buoyancy, centrifugal and Cori-
olis forces as well as Marangoni convection interact. In a pure
Bénard system, a layer of colder fluid is located above one of war-
mer fluid, which causes instability due to buoyancy and thus the
formation of so-called Bénard cells, which circulate from the top
to the bottom of the melt. This phenomenon can be seen at the
lower part of the crucible sidewall, where through the high tem-
perature from the heater, buoyant upward flow is dominating (roll
C). However, owing to additional rotation and surface tension, the
flow situation in the present configuration is much more complex
than for pure buoyancy-driven flow. Close to the free surface, the
sidewall is already colder than the melt, and the Marangoni effect
becomes influential, which drives the flow towards the colder re-
gions due to the change in surface tension. As a result, a counter-
rotating vortex D forms at the upper crucible wall. However, the
lower roll C continues to the free surface, winding around the
smaller vortex D, because the temperature reaches a local maxi-
mum at about r=Rc ¼ 0:88, and then decreases towards the center.
Thus, the surface tension gradient and consequently the velocity at
the surface change their sign. This point of the local temperature
maximum is the region where thermal plumes appear on the free
surface, driven by the buoyancy forces and supported by the
Marangoni convection. In the top view of the melt surface, this
can be identified in the mean velocity field at the location where
the velocity changes its sign (see Fig. 4b). In the instantaneous
field, hot-spots or islands can be seen there (see Fig. 4a), as men-
tioned in the previous section. The strong flow induced by the sur-
face tension continues to the corner of the crystal and slightly
further underneath it, but the shear layer below the free surface
is very thin, so that the influence on the bulk flow remains small.
Right below the crystal, owing to the rotation an Ekman layer is
formed, which is a viscous boundary layer for rotation. It is very
thin, see the enlargement of the area in Fig. 6f. The flow inside
the boundary layer is obviously dominated by centrifugal forces,
as the velocity vectors are directed outwards despite the counter-
acting velocity of the large vortex A below the crystal. In Fig. 6f, it
can be seen that due to the change in flow direction another small
vortex is generated near the edge of the crystal, which does not



Fig. 5. Instantaneous pressure contours and streamlines in the melt in a horizontal cut through the crucible ðz=Rc ¼ 0:25Þ. The crucible is rotating in counter-clockwise
direction, the pictures show the movement relative to it. Intervals of 10 dimensionless time units (� 18 s or 1.5 crucible revolutions) are between consecutive pictures (from
top left to bottom right line by line), giving a total time of 50 dimensionless units or � 90 s or 7.5 rev., while the large vortical structure moves less than one half revolution
relative to the crucible.
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Fig. 6. Circumferentially and time-averaged temperature hTi and temperature fluctuations
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, velocities huri and huzi and streamlines in the melt in a vertical cut

through the center of the crucible (axis of symmetry on the left border, crucible wall on the right border).
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have an impact on the bulk flow owing to its size. This phenome-
non was not mentioned by Wagner [64], although by looking clo-
sely at his simulation results, one might be able to see such an
Ekman layer with the small recirculation zone.

The crystal can be seen as a rotating disc, so apart from the Ek-
man layer, a big vortex A is forming below called a Taylor–Proud-
man cell, which is induced by centrifugal forces competing with
the radial pressure gradient. As mentioned in the previous section,
the rotating disc induces spiral flow, which cannot be depicted in
this two-dimensional vertical cut, neglecting the flow in circumfer-
ential direction, and which is also ruled out through the averaging
procedure. At the central axis the downward flow is also induced
by the negative buoyancy through the temperature difference be-
tween the cold crystal and the heated bottom. At the bottom, an-
other Ekman layer is formed through the rotation.

The vortex B in the middle of the depicted crucible-half (see
Fig. 6e) is a product of the Taylor–Proudman cell A and the
buoyant Bénard cell C at the sidewall. The Taylor–Proudman cell
from the rotating crystal, supported by the negative buoyancy,
moves the cold melt to the bottom, which has to move upwards
again at some point to conserve the mass and momentum. The
buoyant cell at the sidewall does move the fluid upwards, how-
ever, at this aspect ratio (H/R = 0.5) of the crucible, a Bénard cell
embracing the whole radius is not stable. Thus, the vortex is
split up, and another roll B in between both vortices A and C

is formed to account for the opposing flow directions. From
the contour plots of the velocities (Fig. 6), one can see that the
values in the bulk of the melt are very low, so the structure in
the middle is indifferent, which can also be concluded by looking
at the fluctuations as will be done in the next section. Only the
radial movement below the crystal towards the center and in
opposite direction at the free surface near the wall as well as
the axial upward flow at the sidewall are of significant velocity
magnitude. The observation of this vortex B is coincident with
the finding of an additional vortex induced by the thermocapil-
lary forces as mentioned in Kumar et al. [83].

The above described overall flow structure containing four ma-
jor vortices resembles closely the simulation results of Wagner
[64], who computed a very similar case, as already mentioned.
Nevertheless, some differences are present: Wagner counts five
vortices in his plot showing streamlines of the averaged flow field.
However, a combination of two of them could be comparable to
vortex C, only stretching further out along the free surface. Fur-
thermore, the analogon to vortex B extends further along the bot-
tom. This can be caused by Wagner’s slightly different conditions
such as a coefficient of thermal expansion of b ¼ 1:0� 10�4 K�1

and the approximation of the thermal radiation from the free sur-
face by a fixed heat flux.



Fig. 7. Circumferentially and time-averaged RMS velocity fluctuations
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The Cz–Si case using a realistic crucible geometry simulated by
Kumar et al. [83] served as a basis for Wagner’s and the present
idealized case. In a direct comparison, one can see a similar flow
structure exhibiting the main features mentioned in this section,
containing large convection rolls. The buoyant vortex C at the wall
could be identified as well as the smaller recirculation zone D.
However, due to the different geometry, the shape of the vortices
do not completely coincide with the present results. Also, the fact
that the data in [83] are not averaged in circumferential direction,
complicates the comparison. Moreover, the case was simulated
using a very coarse grid in relation to the present DNS, such that
some flow features, especially those invoked by turbulence, may
not have been resolved.

6.3. Temperature fluctuations and Reynolds stresses

From the statistical data, besides the averaged values, also fluc-
tuations are obtained. These are characteristic for turbulence. The
correlations between the different velocity fluctuations form the
Reynolds stress tensor. In Fig. 6b it can be seen that the averaged
root mean square (RMS) temperature fluctuations

ffiffiffiffiffiffiffiffiffiffiffiffi
hT 0T 0i

p
tend to

zero at the crucible walls due to the fact that a fixed temperature



Fig. 8. Circumferentially and time-averaged turbulent heat fluxes hu0rT
0i, hu0tT

0i, and hu0zT 0i, and viscous dissipation rate ek and production terms Pk and PT in the melt in a
vertical cut through the center of the crucible (axis of symmetry on the left border, crucible wall on the right border).
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profile is applied there. Also at the crystal, the temperature is fixed
to the melting temperature, and thus the fluctuations show very
small values in its vicinity. However, at the corner of the crystal,
where the free surface of the melt starts, the maximum fluctuation
is located. This is caused by the large temperature difference be-
tween the free surface and the crystal, which induces a strong
Marangoni flow at the surface, counteracting the centrifugal forces
due to the rotation of the fluid (see Section 6.4). At this location,
there is also an abrupt change in the heat flux density, with the
cooling of the crystal on one side, and the thermal radiation from
the free surface on the other side, which adds to the unsteadiness
of the temperature. Furthermore, the high rotation rate of the crys-
tal leads to high shear rates and thus an anisotropic flow in the
vicinity of the crystal, which also increases the temperature fluctu-
ations in this region. The location of the maximum temperature
fluctuation at the corner of the crystal agrees with the results of
Wagner [64] and Kumar et al. [83].

The RMS values of the velocity fluctuations representing the
normal Reynolds stresses are depicted in Fig. 7. From the range
of the values compared with those of the averaged velocities, it
can be noticed that the fluctuations are in some regions much
higher than the actual velocities. From this fact it becomes clear
that the flow in the Si melt is highly instationary. The variations
of the radial and tangential velocities show their maxima at the
free surface, where the strong Marangoni convection takes place
and competes with the buoyant and centrifugal forces, and below
the crystal, where strong shear is induced by the rotation of the
crystal. Near the walls, the values of

ffiffiffiffiffiffiffiffiffiffiffiffi
hu0iu0ii

p
naturally tend to zero.

Nevertheless, the tangential component
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hu0tu0ti

p
shows strong fluc-

tuations around the lower corner of the crucible, although one
would suggest quite a steady flow due to the rotation of the cruci-
ble. Yet, in this area the highest temperatures are present, so that
the induced buoyancy is very strong and causes high fluctuations,
which on the other hand are relatively small compared to the abso-
lute velocities (see Fig. 6). The same applies to the vertical compo-
nent

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hu0zu0zi

p
near the sidewall, where the maximum fluctuation is

located corresponding to the high average value of huzi. In the
vicinity of the central axis of the crucible, also high fluctuations
are present due to the strong temperature changes, as mentioned
above, causing unsteady buoyant flow in combination with the ef-
fects of rotation. The overall absolute values of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hu0zu0zi

p
are signif-

icantly smaller than the other fluctuations, which is partially
caused by the shallow geometry, limiting the buoyant forces com-
pared to the Marangoni and Coriolis forces due to the rotation.

The turbulent kinetic energy, depicted in Fig. 7d, is defined as
the trace of the Reynolds stress tensor: k ¼ 1=2hu0iu0ii and is a good
measure of the overall contents of turbulence in the melt due to
flow. As expected from the plots of the single fluctuations, the
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maximum turbulent kinetic energy is located at the free surface
and below the crystal, where the highest shear rates occur and
the flow is highly instationary. At the walls, the values of k are very
low due to the boundary layers.

The values of the mixed correlations of the velocity fluctuations
representing the Reynolds shear stresses (Fig. 7e–g) are about one
order of magnitude smaller than the main Reynolds stresses (the
squared values hu0iu0ii, not the RMS values), so their accuracy may
be lower than for the normal stresses. Clearly, in the combination
of radial and tangential fluctuations, the strong Marangoni effect at
the free surface can be recognized. In the plot of hu0ru0zi and hu0tu0zi, it
can be seen that the fluctuations at the corner of and below the
rotating crystal as well as at the sidewall, where the strong buoy-
ant vortex C and the recirculation zone D are located, are
dominant.

The mixed velocity–temperature correlations hu0iT
0i represent

turbulent heat fluxes and can be used to characterize the heat
transport in the melt due to turbulence (see Fig. 8a–c). In radial
direction, the heat transport hu0rT

0i shows the largest absolute
values at the corner of the crystal, corresponding to the strong
velocity and temperature gradients due to the counterrotation
of the crystal and the transition of the melt from the hot free
surface towards the cooler crystal. Another peak is located at
the free surface near the crucible sidewall, where through the
rising buoyant plumes temperature and velocity differences oc-
cur. However, the absolute magnitude of the heat flux there is
about one order smaller than at the corner of the crystal. At
the sidewalls and bottom, the values are near zero due to the
fixed crucible temperature.

In tangential direction, the maximum heat flux hu0tT
0i can also be

found near the edge of the crystal for the same reason as men-
tioned above for the radial flux. Another region with high absolute
values is located close to the sidewall where the tangential velocity
is large due to the crucible rotation and thus the fluctuations are
relatively high.

The vertical turbulent heat flux hu0zT 0i shows its highest values
below the center of the crystal, which originates from the strong
temperature differences and the resulting instationary buoyant
flow there. This corresponds well with the plots of the temperature
and vertical velocity variances (Figs. 6b and 7c). Relatively high
values can also be detected at the location of the strong buoyant
vortex C near the sidewall of the crucible. The heat flux tends to
zero near the bottom and the free surface due to the fact that there
is no vertical velocity, and also the temperature distribution is
stable.

6.4. Budgets

It is a characteristic property of turbulence that the kinetic en-
ergy of the flow is finally dissipated into heat. Thus the dissipation
rate of the turbulent kinetic energy ek, as defined in Eq. (8), is a
good measure for the amount of turbulence contained in a flow.
In the present case, the dissipation almost exclusively takes place
below the crystal and at the free surface (see Fig. 8d), as one could
have suggested from the preceding analysis of the Reynolds stres-
ses and the distribution of turbulent kinetic energy k itself.

Deriving the whole transport equation for k by contracting the
indices of the equation for the Reynolds stresses, one obtains be-
sides the dissipation rate also terms for diffusion, stress production
and buoyancy production. The dissipation rate ek, the stress pro-
duction Pk and the buoyancy production Gk are the most interest-
ing terms in this balance. The remaining definitions are as follows:

Pk ¼ �hu0iu0ji
ohuii
oxj

and Gk ¼ �
Gr

Re2 hu
0
iT
0i: ð11Þ
From the operating conditions of the present case, the fraction of
the dimensionless numbers Gr=Re2 can be calculated to approxi-
mately 1. Thus, considering the fact that the gravitational force only
acts in z-direction, the buoyancy term Gk is identical to the vertical
turbulent heat flux hu0zT

0i, which is depicted in Fig. 8(c) and has al-
ready been discussed in the previous section.

The stress production term Pk is shown in Fig. 8e. According to
its definition, the highest absolute values can be found where the
steepest velocity gradients and the highest fluctuations occur. This
is the case below the crystal and at the free surface corresponding
to the strong changes in the radial and tangential velocity compo-
nents, and at the sidewall, where the vertical velocity exhibits
highly instationary behavior.

Similar to the Reynolds stress equation, an equation for the tur-
bulent heat fluxes hu0iT

0i can be derived. Here, also different terms
for diffusion, production, dissipation, etc. appear. For the present
case, only the buoyancy production

GT ¼
Gr

Re2 hT
0T 0i ð12Þ

should be considered. As mentioned before, the prefactor Gr=Re2 is
approximately 1, which leaves the buoyancy term GT identical to
the temperature fluctuation (see Fig. 6b) and thus is not shown here
again.

Furthermore, an equation for the temperature variance can be
obtained by multiplying the equation for the instantaneous tem-
perature by T 0 and time-averaging it afterwards. The arising term
for the production by the mean temperature gradient

PT ¼ �2hu0iT
0i ohTi

oxi
ð13Þ

contains valuable information about the budget of turbulence
and can be compared to the stress production term of Eq.
(11). Due to the derivation from the temperature equation, no
buoyancy term like GT appears. In Fig. 8f the high accordance
of PT to the RMS temperature variance

ffiffiffiffiffiffiffiffiffiffiffiffi
hT 0T 0i

p
(see Fig. 6b) with

high values below the crystal can be seen. Furthermore, the po-
sition of the maximum value at the corner of the crystal
matches the plots of the turbulent heat fluxes in radial and tan-
gential direction.

Thus, the results are consistent with the definition of the turbu-
lent quantities: The stress production Pk (production due to mean
velocity gradient) corresponds to the velocity fluctuations,
whereas the production due to the mean temperature gradient
PT is in accordance with the temperature variance.

7. Summary and conclusions

The results of a DNS of an idealized Cz–Si configuration were
presented, which is a good example of rotating buoyancy- and sur-
face-tension driven flow (Rayleigh-Bénard–Marangoni convec-
tion). This computation was carried out in order to gain a
detailed insight in the structure of flows of this kind and also to ob-
tain reference data for the validation of the LES method, which is
used to reduce the computational effort of the predictions. Simula-
tion results available in the literature were considered as either of
insufficient accuracy or availability. The setup consists of a rotating
cylindrical crucible of 170 mm radius, which contains the Si melt,
with a disc-shaped crystal of 50 mm radius on top of the melt,
which rotates in the opposite direction. Temperature boundary
conditions were taken from experimental measurements, and the
material properties of Si were applied. Thus, characteristic dimen-
sionless numbers of Re ¼ 4:7� 104;Gr ¼ 2:2� 109;Ma ¼ 2:8� 104,
and Ra ¼ 2:8� 107 were obtained, which are in the regime of fully
turbulent flow.
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In order to resolve all turbulent scales, a very fine computa-
tional grid of high quality was constructed with approximately
8:4� 106 CVs. A grid study showed that the resolution was suffi-
cient. The solution was obtained using a finite-volume scheme
for curvilinear block-structured grids and an explicit time discret-
ization. The code is highly parallelized and vectorized, and there-
fore runs very efficiently on supercomputers. As expected, the
results exhibit a highly turbulent, instationary, three-dimensional
flow and heat transfer in the melt, which is dominated by thermal
plumes rising from the bottom of the crucible to the free surface.
However, it was found that a large, stable vortical structure
emerges around the center of the crucible and rotates slightly fas-
ter than the crucible itself. This hampered the averaging process,
which was carried out to obtain statistical data for the turbulence
analysis, and thus the simulations had to be run for a very long
time. The collected time- and circumferentially averaged data
show four characteristic Bénard cell-like vortices which evolve
through the interaction of buoyant, Coriolis, and surface-tension
forces. The temperature and velocity fluctuations have their max-
ima below the crystal, at the free surface, and especially around
the corner of the crystal. Besides the Reynolds stresses and turbu-
lent heat fluxes, also higher-order statistics such as the dissipation
rate and the production terms due to the mean flow and buoyancy
were analyzed. Besides, the DNS data will serve as a reference case
for the validation of LES predictions within a subsequent paper.
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